

LICEO SCIENTIFICO STATALE "E.FERMI"

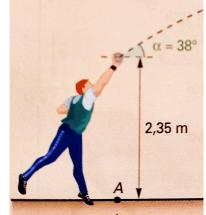
Via Mazzini 172/2 – 40139 Bologna (BO)

Prova di FISICA per gli studenti con giudizio in sospeso per le classi seconde 2023-2024.					
Data:2024	Durata della prova: 120' min				
Nome e Cognome:	Classe Sezione				
E	E' consentito l'uso della calcolatrice scientifica non programmabile				

Esercizio 1

Un automobilista sta viaggiando alla velocità costante $v_0=108\frac{km}{h}$ quando si accorge della presenza di un platano divelto e caduto in mezzo alla carreggiata, alla distanza di 90 m. Il conducente inizia immediatamente a frenare e l'auto rallenta con un'accelerazione costante, in grado di arrestarla in 5,00 s.

a) Determina l'accelerazione dell'auto e calcola lo spazio di frenata, verificando che l'auto riesce a fermarsi prima dell'ostacolo.


In realtà il conducente ha i riflessi lenti e comincia a frenare dopo un tempo di reazione pari a $\Delta t_R = 1,200 \, s$, dal momento in cui vede l'ostacolo.

- b) Rappresenta il grafico v-t del moto dell'auto, a partire dall'istante in cui il conducente vede l'albero.
- c) Verifica che, in tale caso, l'auto colpisce l'ostacolo prima di fermarsi.
- d) Con quale velocità avviene l'urto con l'albero?

Esercizio 2

Durante un allenamento, un pesista lancia una sfera dall'altezza di 2,35 m, con un angolo di 38° e una velocità iniziale di modulo 12,0 m/s. In figura è rappresentata nei dettagli la situazione.

- a) Dopo aver fissato un opportuno sistema di riferimento, scrivi le leggi della posizione e della velocità che descrivono il moto della sfera.
- b) Calcola la posizione della sfera e le componenti della sua velocità dopo 500 ms dal lancio.
- c) Calcola la massima altezza che la sfera raggiunge rispetto al suolo.
- d) Calcola il tempo di volo e la gittata della sfera.

С	_	^	~	_	ia	、 3

_	-			-
Esei	\sim 1	71	\sim	л
LSCI	L	ZI	u	-

GRIGLIA DI VALUTAZIONE

Il punteggio viene attribuito in base alla correttezza e completezza nella risoluzione dei vari quesiti, nonché alle caratteristiche dell'esposizione (chiarezza, ordine, struttura, argomentazione).

	Es. 1	Es. 2	Es. 3	Es. 4	Totale
Punteggio max.	25	25	25	25	100
Punteggio					